C. elegans apoptosis pathway

EGL-1 — CED-9 — CED-4 — CED-3 — Effector caspases

BH3 BCL2 APAF-1 CASPASE-9

Substrates cleavage
CELL DEATH

Phagocytosis

Ced-1 Ced-2 Ced-5 Ced-6 Ced-7 Ced-10 Ced-12 PSR
Lrp CrkII Dock180 Gulp ABC-1 Rac Elmo PSR
Phagocytosis of apoptotic cells in C. elegans

Apoptotic corpse

CED-7
(ABC-1)

CED-12
(Elmo)

CED-1
(SR-EC/LRR)

CED-7
(ABC-1)

CED-2
(CrkII)

CED-5
(Dock180)

CED-10
(Rac)

PSR1

CED-6
(GULP)

Neighboring cell
Model systems for studying Development

- Plants (A. thaliana)
- Worms (C. elegans)
- Fruit flies (D. melanogaster)
- Zebrafish (D. rerio)
Drosophila as a Model System

1. Short generation time ~10 days

- Adults mating
- Embryo 1 day
- Embryogenesis 1 day
- Pupae 3.5-4.5 days
- Pupariation 2.5-3 days
- First Instar Larvae 3x1 day
- Second Instar Larvae 3x1 day
- Third Instar Larvae 3x1 day
Drosophila as a Model System

2. Complex body plan

- mouthpart
- frontal plate and upper lip
- antenna
- eye
- leg
- wing
- haltere
- genitalia

adult

larva
Drosophila as a Model System

3. Only 4 chromosomes

- The first physical and genetic map
 Centimorgan : 1% recombination
 (Sturtevant and Morgan)
 TH Morgan Nobel lecture 1933

- Polytene chromosomes
 In situ hybridization

- Positional cloning, cDNA and chromosomal libraries (Hogness)

- Genome project completed
Drosophila as a Model System

4. Genetic approach:
 - **Loss of function genetics:**
 Chemically generated mutants (EMS, ENU)
 Chromosomal deficiencies (~ 85% of the genome, X-rays, γ-rays, P-elements)
 Transposable elements
 Gene knockout by homologous recombination
 Mosaic analysis: making clones of mutant cells in a normal tissue (FLP/FRT)
 - **Gain of function genetics:**
 Dominant mutants
 Chromosome duplications
 Tissue specific expression systems: UAS/Gal-4
 - **Biochemical**
 HPLC purification from whole organism extracts
Drosophila as a Model System

5. Molecular approach:

- A physical map that corresponds to the genetic map: Fully sequenced, genetically marked genome.
- Excellent cytogenetics: Genome is arrayed on overlapping Bacterial Artificial Chromosome (BAC) clones, SNPs mapping.
- ESTs (Expressed Sequence Tags) characterized for all stages of the life cycle,
- Genome-wide microarrays,
- Antibodies and transposable elements to mark gene products, cell morphology and subcellular structure,
- Stable single copy transformation,
- Targeted, tissue specific expression systems (UAS/Gal-4),
- Genome-wide RNAi library allow double stranded RNA bathing/ transfection of cultured cells to address partial or complete LOF phenotypes,
- First genome-wide two hybrid screen (protein-protein interaction)
- And the fly community will not stop there!
Normal Cell

- Cell shrinkage away from neighbouring cells
 - Plasma membrane blebbing
 - Cytoplasmic and nuclear condensation
 - Margination of condensed chromatin
 - Nuclear and cellular fragmentation
 - Apoptotic Bodies
 - Phagocytosis
The importance of PCD in development and homeostasis
Consequences of deregulation of PCD

Excessive cell death:
- Degenerative neurological disorders
- Stroke, cardiac ischemia,
- Immune suppression associated with AIDS

Suppression of cell death:
- Autoimmune diseases
- Cancer
Programmed Cell Death (PCD)

1. Cell Death Signal
2. Execution of Death
3. Engulfment of remains
Programmed cell death during *Drosophila* embryogenesis

John M. Abrams1, Kristin White1, Liselotte I. Fessler2 and Hermann Steller1

Development 117, 29-43 (1993)

1Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Molecular Biology Institute and Biology Department, University of California, Los Angeles, CA 90024, USA

[Image: Acridine orange staining](image)

Allowed for the initiation of a deficiency screen for PCD mutants
A deficiency kit that covers over 85% of the genome!!!

Allows for the rapid screening of the entire genome for genes involved in any embryonic phenotype of interest.

Genetic definition of a deficiency:
contains at least two complementation groups,

Overlapping deficiencies provide still finer resolution,

Isogenic deletions with precise breakpoints (drosdel project)
Homozygous $Df(3L)H99$ embryos lack all PCD
The *H99* deletion allowed for the identification of three regulators of PCD, *rpr*, *hid*, and *grim*.
No homology of sequences except in their first 14 aa: RHG/IBM motif

- **Rpr** 65 aa
- **Grim** 138 aa
- **Hid** 410 aa
- **Smac** 239 aa

Reaper 2 AVAFYIPDQATLL 14
Grim 2 AIAYFIPDQAQLL 14
Hid 2 AVPFYL|EGGADD 14
Sickle 2 AIPFY|E|EHAPKS 14
Jafrac2 - AKPE -
Smac /Diablo 54 AVPI 66

- **Sickle** 108 aa

Jafrac 2 ERS peroxidase domain 242 aa
Early embryogenesis in *Drosophila*

Nuclei cleave in a common cytoplasm (syncytium)
At cycle 10, nuclei migrate to the periphery (blastoderm)
Germ line transgenic making in the fly

Used in:
- Rescue experiments (replacement strategy)
- Over-expression experiments
- Homologous recombination
Genetic screens for enhancers and suppressors of PCD in the eye
Inhibitors/suppressors of apoptosis

dIAP1 blocks both reaper and hid-induced cell death
dBRUCE blocks reaper-induced cell death but not hid
dIAP2 not a very good inhibitor of PCD, cell migration role
DETERIN is most homologous to survivin as it has a single BIR

dIAP 1/thread

BIR1 ── BIR2 ── RING ── 438 aa

dIAP 2

BIR1 ── BIR2 ── BIR3 ── RING ── 498 aa

dBRUCE

BIR ── UBC ── 4876 aa

DETERIN

BIR ── 153 aa
DIAP-1: a central player

thread LOF mutation shows increased PCD in the embryo, and is embryonic lethal.

thread is epistatic to *rpr, hid* and *grim*.

GOF of *Diap1* prevents *rpr, hid* and *grim*-induced death.

GMR transgene alone has no effect, but it can inhibit Dronc and Debcl-induced death, thus it genetically interacts with *Dronc*, a caspase gene, and *Debcl*, a Death enhancer with Bcl-2 homology (pro-apoptotic Bcl-2 homologue).
DIAP1 and the N-end rule-dependent ubiquitination

Nambu’s group identified four enhancers of grim-reaper-induced death, all regulating ubiquitination: uba-1, skpA, faf, and morgue.
There are 7 *Drosophila* CASPASES

Cysteine/ASPartate proteASES related to Ced-3

Apical

- **DRONC**
 - CARD
 - p20
 - p14

- **DECAY**
 - large
 - small

- **DRICE**
 - p20
 - p12

Apical

- **DREDD/DCP2**
 - DED
 - DED
 - p20
 - p10

- **DAMM**
 - p20
 - small

- **DCP-1**
 - p20
 - p13

- **STRICA/DREAM**
 - Ser/Thr Rich
 - p20
 - small

CARD: Caspase Activation Recruitment Domain and DED: Death Effector Domain are protein-protein interactions domains
Caspases phenotypes and interactions

Dronc RNAi prevents PCD in the embryo, Dronc deficiency and Dronc dominant negative transgene genetically interact with rpr, hid and grim; Dronc over-expression induces cell death.

Dredd LOF have a defect in the immune response.

Damm dominant negative transgene genetically interacts with hid, and over-expression of Damm induces death.

DCP-1 LOF is lethal at third instar larval stage with no imaginal discs or gonads and melanotic tumors.

Drice, Decay, Strica: no LOF mutation. Drice over-expression has no effect.

Drice and Dcp-1 bind to BIR1 of DIAP-1, and act downstream of Dronc
The *Drosophila* Gas and Brake model

_RPR, HID and GRIM (gas) compete with DRONC for binding to BIR2 domain of DIAP1 (brake), which inhibits DRONC.

Upon cell death signals, RPR, HID or GRIM (gas) bind to DIAP-1 (BIR-2), competing for it with DRONC. Thus the brake (DIAP1) is released from DRONC, the caspase is activated and cell death occurs.
Ubiquitination in programmed cell death regulation

N-end-rule-dependent ubiquination

RING-dependent ubiquination

Physical interaction
Apaf-1 related DARK

IAP antagonists of the Bcl-2 family: Buffy and Debcl
The apoptosome in mammals

Closed monomer → Open dimer → Heptamer

Cyt C → WD40

procaspase ?

Inactive monomer → Inactive dimer → Active dimer
Drosophila apoptosome: how does it function?

A Cytochrome c release involvement still a question?

C Pro-apoptotic Debcl

B Anti-apoptotic Buffy displaced by Debcl?
RNA interference in *Drosophila* S2 cells

RNAi Mechanism

- Introduction of TRIGGER dsRNA
- DICER: processes 21-23nt siRNA
- RISC: destruction of TARGET mRNA

RNAi In S2 cells

- dsRNA to serum-free medium
 (Clemens, et al. 2000 PNAS 97: 6499)

- Partial to complete loss of function
- Uniform penetrance

Loss-of-function phenotype

438 essential genes!
MicroRNAs in Drosophila apoptosis

Developmental and environmental death signals

GRIM
REAPER
SICKLE
HID

DARK

DIAP1

DRONC

DRICE

mir-14

Cell Growth and proliferation

CELL DEATH

FAT LEVELS

Transcriptional control: RNAi/transcription complex, chromatin silencing

mir-2, mir-13 family?
Drosophila intrinsic and extrinsic PCD pathways

Extrinsic death signals
- TNFR family
- dFADD
- UV

Intrinsic death signals
- Rpr, Grim, Hid
- Dmp53
- Debcl
- BH3 only

Death receptor response
- Diap-1
- Caspases

Phagocytosis
- CELL DEATH
Programmed Cell Death (PCD)

1. Cell Death Signal

2. Execution of Death

3. Engulfment of remains
Drosophila embryonic macrophages

Stage 11

Stage 13

Stage 15

Stage 17

ECM production

Phagocytosis

Endocytosis

Glial cells and epithelial cells can also engulf!

Croquemort, a CD36-related macrophage receptor

Requirement for *croquemort* in phagocytosis of apoptotic cells in *Drosophila*

Peroxidasin Ab 7-AAD Croquemort Ab

Wild type crq-/- crq-/-, uas-crq, hs-Gal4

C. elegans apoptosis pathway

EGL-1 → CED-9 → CED-4 → CED-3 → Effector caspases → Substrates cleavage → CELL DEATH → Phagocytosis

Ced-1 Ced-2 Ced-5 Ced-6 Ced-7 Ced-10 Ced-12 PSR Lrp CrkII Dock180 hCed-6 ABC-1 Rac Elmo PSR?
A role for \textit{Draper} in phagocytosis of apoptotic cells by \textit{l(2)mbn} and \textit{SL2} cells and embryonic macrophages

\textit{Draper} RNAi in \textit{l(2)mbn} and \textit{SL2} cells prevents engulfment of apoptotic cells

\textit{Crq} RNAi does not prevent engulfment of apoptotic cells
Although the mRNA is targeted, the endogenous protein is still present

\textit{Draper} RNAi by injection of dsRNA in embryos reduces the engulfment of apoptotic cells \textit{in vivo}.

AND THERE IS SO MUCH MORE TO LEARN!

EGFR/Ras
Eiger/TNF
MAPK/Junk pathway
Hippo/salvador/warts regulators of cell growth
PCD and cell competition
DIAP2 in innate immunity
DIAP2 in cell migration
AUTOPHAGY
Etc…